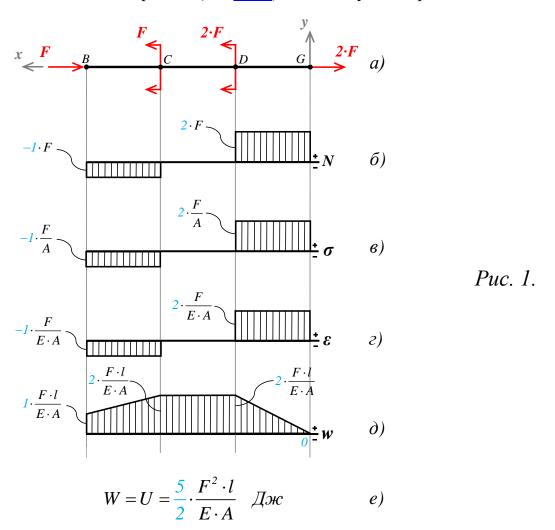

A-06 (ANSYS)

Формулировка задачи:


Дано: Консольный стержень нагружен системой осевых сил.

E – модуль упругости материала;

A – площадь поперечного сечения.

Найти: эпюры N, σ , ε , w; значение U.


Аналитический расчёт (см. А-06) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Убрать пункты меню, не относящиеся к прочностным расчётам:

M M > Preferences > Отметить "Structural" > ОК

Нумеровать точки и линии твердотельной модели, узлы модели конечноэлементной:

```
U_M > PlotCtrls > Numbering >
OTMETHTE KP, LINE, NODE,

УСТАНОВИТЕ Elem на "No numbering",

УСТАНОВИТЕ [/NUM] на "Colors & numbers" >
> OK
```

Увеличить размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

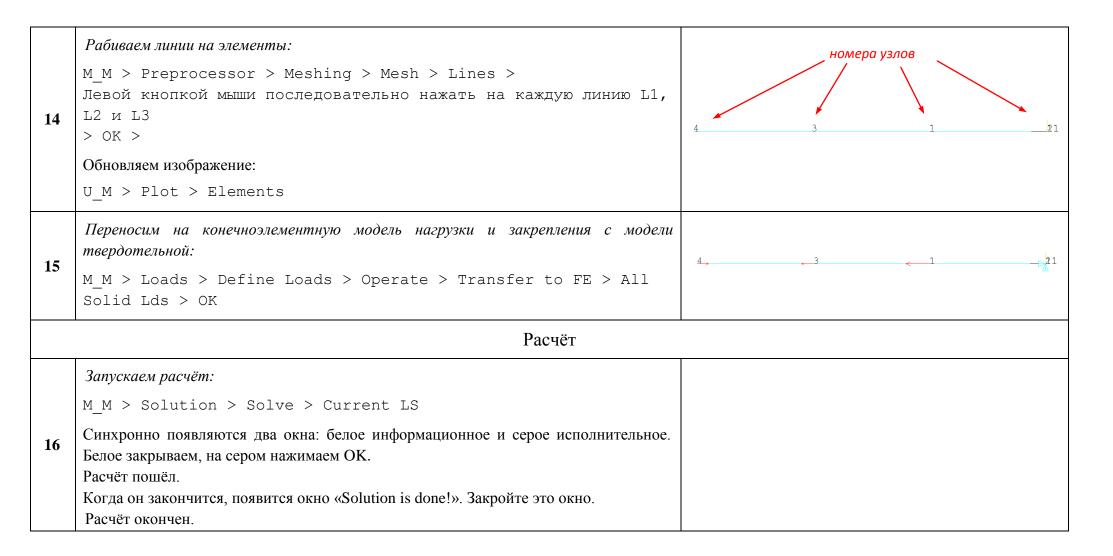
Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro

Решение задачи:

Приравняв E, A, F и l, к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи:U_M > Parameters > Scalar Parameters >E=1 > Accept >A=1 > Accept >Iz=1e6 > Accept >F=1 > Accept >l=1 > Accept >nu=0.3 > Accept >Iz — изгибный момент инерции поперечного сечения;nu — коэффициент Пуассона для металлов.	Items
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET, 1, BEAM3 > Enter	
3	Первая строчка в таблице реальных констант: площадь A ; момент инерции Iz ; высота $l/10$. $C_P>R$, 1, A, Iz , $L/10>$ Enter	
4	Cвойства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > EX пишем "E", PRXY пишем "nu" > ОК > Закрываем окно«Deine Material Model Behavior».	

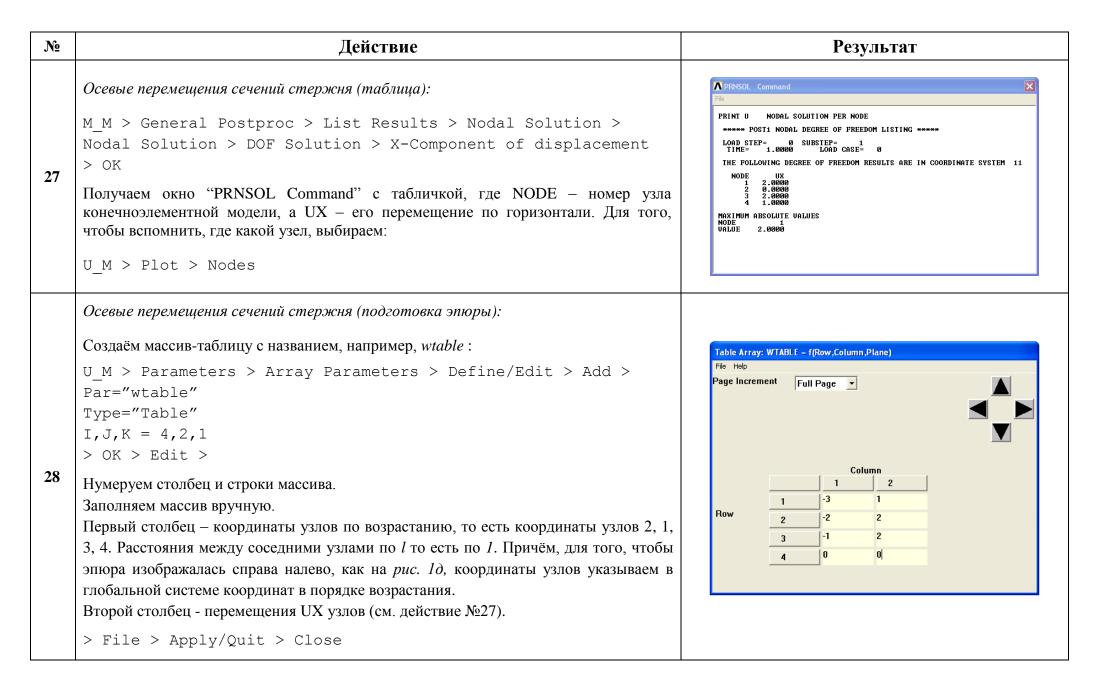

№	Действие	Результат
	Твердотельное моделирование	
5	Разворот рабочей плоскости: Прорисовываем систему координат рабочей плоскости. Сейчас она ориентирована по глобальной системе координат: U_M > WorkPlane > Display Working Plane Поворачиваем рабочую плоскость на 180 градусов вокруг оси Y с тем, чтобы её ось X была направлена справа налево: U_M > WorkPlane > Offset WP by Increments > Шесть раз нажимаем на появившейся панельке кнопку	Ось X рабочей плоскости Ось X глобальной системы координат.
6	Рабочая система координат №11 (ось х направлена влево): U_M > WorkPlane > Local Coordinate Systems > Create Local CS > At WP Origin > КСN пишем 11 КСS устанавить Cartesian > ОК Активная система координат автоматически меняется с глобальной (декартова система №0, ось X вправо) на установленную нами (декартова №11, ось X влево). Можете заметить, как внизу надпись «сsys=0» изменилась на «csys=11». Тем не менее, оси глобальной системы координат продолжают отображаться.	real=1 csys=11 secn=1

№	Действие	Результат
7	Гасим в рабочем поле оси рабочей плоскости и оси глобальной системы координат, прорисовываем оси локальной рабочей системы координат №11 (ось х): U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > ОК U_M > WorkPlane > Display Working Plane U_M > PlotCtrls > Symbols > [CS] установить в положение "on" > ОК > Пом > ОК > ОК > ОК > ОК > ОК > ОК > ОС локальных систем не подписываются, только по цвету можно определить их названия: X — чёрная ось;	NODES NODE NUM ———————————————————————————————————
	Y — зелёная ось; Z — синяя ось. Сейчас в рабочем поле мы видим оси X (влево) и Y (вверх). Ось Z направлена от нас и не видна.	

№	Действие	Результат
8	Ключевые точки G, D, C и B: M_M > Preprocessor > Modeling > Create > Keypoints > In Active CS > NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем l,0,0 > Apply > NPT пишем 3 X,Y,Z пишем 2*l,0,0 > Apply > NPT пишем 4 X,Y,Z пишем 4 X,Y,Z пишем 3*l,0,0 > Apply > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit Номер точки 1 сливается с первой цифрой номера системы координат 11, поэтому не виден.	A 3 2 — 11 Ключевые точки
9	Tpu yчастка — mpu линии между точками: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно кликаем на точки 2 и 1 3 и 2 4 и 3 > OK	4 T.3 3 T.2 2 T.1 11

No	Действие	Результат
10	Заделка: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "All DOF" > OK	4 T.3 3 T.2 2 T.1 11
11	<pre>K ключевым точкам прикладываем внешние сосредоточенные силы: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажимаем на точку 2 > OK > Lab установить "FX" VALUE пишем -2*F > Apply > Левой кнопкой мыши нажимаем на точку 3 > OK > Lab установить "FX" VALUE пишем -F > Apply > Левой кнопкой мыши нажимаем на точку 4 > OK > Lab установить "FX" VALUE пишем F > OK</pre>	4, I.3 . 3 I.2 < 2 I.1 II.1
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	

No	Действие	Результат	
	Конечноэлементная модель		
	Указываем материал, реальные константы и тип элементов, на которые будут разбиты линии твердотельной модели:		
12	M_M > Preprocessor > Meshing > Mesh Attributes > Picked Lines > Левой кнопкой мыши нажать последовательно на каждую линию L1, L2 и L3 > OK > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK		
13	Vuacmки без pacnpedeлённой нагрузки можно бить одним элементом: M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines> Левой кнопкой мыши последовательно нажать на каждую линию L1, L2 и L3 > ОК > NDIV пишем 1 > ОК Обновляем изображение: U_M > Plot > Multi-Plots	4 T.3 3 T.2 2 T.1 1	



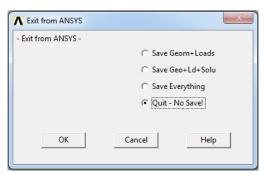
№	Действие	Результат
	Просмотр результатов	
17	Cunobas cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" [/PSF] Show pres and convect as устанавливаем в положение "Arrows" [CS] установить в положение "off" > OK > В окне "Applied Boundary Conditions" U установить "Off"	4,1 713 72 1 2 2

No	Действие	Результат
18	<pre>U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
19	Cocmaвление эпюры внутренней растягивающей осевой силы: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "1" > Apply > "By sequence num", "SMISC,", "7" > OK > Close	
20	Прорисовка эпюры внутренней растягивающей осевой силы: М_М > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS1" LabJ установить "SMIS7" > ОК Получаем тот же результат, что и на рис. 1б. Видим эпюру, состоящую из двух прямоугольников. Высоту каждого можно определить по его цвету: левый прямоугольник высотой -1, правый прямоугольник высотой +2. Цифры 14 есть номера узлов конечноэлементной модели (см. действие №14).	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS1 SMIS7 MIN =-1 ELEM=3 MAX = 2 ELEM=1 4 3 2

N₂	Действие	Результат
21	Cocmaвление эпюры осевого напряжения: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LS,", "1" > Apply > "By sequence num", "LS,", "4" > OK > Close	
22	Прорисовка эпюры осевого напряжения: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "LS1" LabJ установить "LS4" > ОК Получаем тот же результат, что и на рис. 1в. (только числа, выделенные на рис. 1в. синим цветом).	LINE STRESS SUB -1 TIME=1 LS1 LS1 MIN =-1 ELEM=3 MAX = 2 ELEM=1 4 3 2
23	Cocmaвление эпюры линейной осевой деформации: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LEPEL,", "1" > Apply > "By sequence num", "LEPEL,", "4" > OK > Close	
24	Прорисовка эпюры линейной осевой деформации: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "LEPE1" LabJ установить "LEPE4" > ОК Получаем тот же результат, что и на рис. 1г. (только числа, выделенные на рис. 1г. синим цветом).	LINE STRESS SUB =1 TIME=1 LEPE1 LEPE4 MIN =-1 ELEM=3 MAX =2 ELEM=1 4 -14 .8 1.4 2

№	Действие	Результат
25	Положительным в данной задаче считается перемещение ВЛЕВО, значит выводить результаты w следует в локальной системе координат №11. Укажем это: M_M > General Postproc > Options for Outp > [RSYS] установить "Local system" Local system reference no. пишем 11 > OK	Copered for Output Copere
	Осевые перемещения (<i>puc.1d.</i>) в можно получить только дискретно, в узлах модели. Правительной диаграмма (между узлами решение линейно интерполируется); б) Таблица перемещений в узлах; в) Эпюра (линейная интерполяция). Последнее — наиболее наглядно, но и наиболее трудоёмко. Просмотрим перемещения в	
26	Осевые перемещения сечений стержня (цветовая шкала): М_М > General Postproc > Plot Results > Contour Plot > Nodal Solu > Nodal Solution > DOF Solution > X-Component of displacement > OK Цифры 14 есть номера узлов конечноэлементной модели (см. действие №14). Видно, что в узле 2 перемещение равно минимуму (по цветовой шкале это 0), в узле 1 перемещение максимально (по цветовой шкале это 2) и от узла 1 до узла 3 так максимальным и остаётся (весь средний участок красного цвета). От узла 3 к узлу 4 перемещение уменьшается, но не до нуля, а до зёлёного цвета (это от 0,8 до 1,2 по цветовой шкале). Пожалуй, это вся информация, которую можно извлечь из рисунка.	NODAL SOLUTION SUB =1 TIME=1 UX (AVG) RSYS=11 DMX =2 SMX =2 4 3 MX MN

No	Действие	Результат
№	Oceвые перемещения сечений стержня (прорисовка эпюры): Параметры, необходимые для построения эпюры: по горизонтальной оси будет откладываться первый столбец массива, по оси ординат — второй столбец массива. U_M > Parameters > Scalar Parameters > XN=1 > Accept > YN=2 > Accept > Close Cetka будет на обеих осях эпюры: U_M > PlotCtrls > Style > Graphs > Modify Grid > [/GRID] установить "X and Y lines" > ОК Горизонтальную ось подписываем "L", вертикальную ось подписываем "w", интервал по горизонтальной оси устанавливаем от левого конца стержня до правого (0L), а интервал по вертикальной оси таким, чтобы поместилась эпюра (-0,50): U_M > PlotCtrls > Style > Graphs > Modify Axes > [/AXLAB] X-axis label пишем L [/AXLAB] X-axis label пишем w [/XRANGE] установить "Specified range" XMIN, XMAX установить "Specified range" YMIN, YMAX установить "O" и "2*F*L/E/A" > ОК Прорисовываем эпюру: U_M > Plot > Array Parameters	Результат wtable (1, YN) col. 2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.
	U_M > Plot > Array Parameters ParX установить "wtable(1,XN)" ParY установить "wtable(1,YN)" > OK	


№	Действие	Результат
	Потенциальная энергия упругой деформации U:	↑ PRESOL Command
	<pre>M_M > General Postproc > List Results > Element Solution > Energy > Strain energy > OK</pre>	PRINT SENE ELEMENT SOLUTION PER ELEMENT ***********************************
30	Получаем список «Элемент-энергия». Суммируем энергию:	ELEM SENE 1 2.0000 2 0.0000 3 0.50000
	$U = 2 + 0 + 0,5 = 2,5 = \frac{5}{2}$	MINIMUM VALUES ELEM 2 VALUE 0.0000 MAXIMUM VALUES ELEM 1 VALUE 2.0000
	Получаем тот же результат, что и на <i>puc. 1e.</i> (только коэффициент перед формулой на <i>puc. 1e.</i>).	

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.